Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Viruses ; 15(5)2023 05 22.
Article in English | MEDLINE | ID: covidwho-20245260

ABSTRACT

Infectious bronchitis virus (IBV) belongs to the gamma-coronavirus genus of Coronaviridae and causes serious infectious diseases in the poultry industry. However, only a few IBV strains can infect avian passage cell lines, seriously hindering the progress of basic research on IBV pathogenesis. Whereas IBV field strains can replicate in tracheal ring organ culture (TOC) without any previous adaptation in chicken embryos or primary cells. In this study, to investigate the potential use of TOC as an in vitro infection model for the study of IBV-host interaction, we first established a chicken embryo TOC culture system and carried out an investigation on the IBV replication kinetics in the system. We found that the selected strains of the IBV GI-1, GI-7, GI-13, GI-19, and GI-22 genotypes could successfully replicate in TOC and bring about damage to the infected trachea. Next, we identified host proteins of the chicken embryo trachea that interact with the IBV S1 protein by immunoprecipitation and protein mass spectrometry. A total of 127 candidate proteins were initially identified with major involvement in cell adhesion pathways and apoptosis- and autophagy-related pathways. The heat shock protein 70 (HSP70) was selected for further investigation in the interaction with IBV viral proteins. Our results showed that HSP70 interacted with IBV S1 in both TOC and CEK cells, whereas HSP70 overexpression inhibited viral replication. This study indicates that TOC is a good system for the elucidation of IBV-host interactions and HSP70 is a potential host antiviral factor.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chick Embryo , Infectious bronchitis virus/genetics , Organ Culture Techniques , Trachea , Chickens , Cell Line , Coronavirus Infections/veterinary
2.
Phytomedicine ; 112: 154708, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2232019

ABSTRACT

BACKGROUND: Andrographis paniculata (Burm. f.) Nees has demonstrated potential for treating infections caused by coronaviruses. However, no antiviral activity of andrographolide or A. paniculata extracts against human coronavirus organ culture 43 (HCoV-OC43) has been reported. PURPOSE: This study aimed to evaluate the anti-HCoV-OC43 effect of andrographolide and A. paniculata as well as the correlation between andrographolide concentration and the anti-HCoV-OC43 activity of A. paniculata extracts. METHODS: This study evaluated and compared the in vitro anti-HCoV-OC43 activities of various A. paniculata extracts and andrographolide. To obtain A. paniculata extracts with different concentrations of andrographolide and its components, methanol and deep eutectic solvents (DES) were used to extract the aerial parts of A. paniculata. Andrographolide content was determined using UV-HPLC, and antiviral activity was assessed in HCT-8 colon cells. RESULTS: The methanol and five acidic DES (containing malic acid or citric acid) extracts of A. paniculata exerted anti-HCoV-OC43 activity. Antiviral activity had a moderately strong positive linear relationship (r = 0.7938) with andrographolide content. Although the methanol extract contained the highest andrographolide content (2.34 mg/ml), its anti-HCoV-OC43 activity was lower than that of the DES extracts containing lower andrographolide concentrations (0.92-1.46 mg/ml). CONCLUSION: Methanol and the five acidic DES extracts of A. paniculata exhibited anti-HCoV-OC43 activity. However, the in vitro antiviral activity of A. paniculata extracts did not have a very strong positive linear relationship (r < 0.8) with andrographolide concentration in the extract. As a result, when comparing A. paniculata extracts, the anti-HCoV-OC43 test could provide a different result from the andrographolide concentration determination.


Subject(s)
Andrographis , Coronavirus , Diterpenes , Humans , Plant Extracts/pharmacology , Solvents , Andrographis paniculata , Deep Eutectic Solvents , Methanol , Organ Culture Techniques , Diterpenes/pharmacology
4.
PLoS Med ; 19(3): e1003922, 2022 03.
Article in English | MEDLINE | ID: covidwho-1714706

ABSTRACT

BACKGROUND: The risk of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission through corneal graft is an ongoing debate and leads to strict restrictions in corneas procurement, leading to a major decrease in eye banking activity. The aims of this study are to specifically assess the capacity of human cornea to be infected by SARS-CoV-2 and promote its replication ex vivo, and to evaluate the real-life risk of corneal contamination by detecting SARS-CoV-2 RNA in corneas retrieved in donors diagnosed with Coronavirus Disease 2019 (COVID-19) and nonaffected donors. METHODS AND FINDINGS: To assess the capacity of human cornea to be infected by SARS-CoV-2, the expression pattern of SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE-2) and activators TMPRSS2 and Cathepsins B and L in ocular surface tissues from nonaffected donors was explored by immunohistochemistry (n = 10 corneas, 78 ± 11 years, 40% female) and qPCR (n = 5 corneas, 80 ± 12 years, 40% female). Additionally, 5 freshly excised corneas (80 ± 12 years, 40% female) were infected ex vivo with highly concentrated SARS-CoV-2 solution (106 median tissue culture infectious dose (TCID50)/mL). Viral RNA was extracted from tissues and culture media and quantified by reverse transcription quantitative PCR (RT-qPCR) (viral RNA copies) 30 minutes (H0) and 24 hours (H24) after infection. To assess the risk of corneal contamination by SARS-CoV-2, viral RNA was tested by RT-qPCR (Ct value) in both corneas and organ culture media from 14 donors diagnosed with COVID-19 (74 ± 10 years, 29% female) and 26 healthy donors (79 ± 13 years, 57% female), and in organ culture media only from 133 consecutive nonaffected donors from 2 eye banks (73 ± 13 years, 29% female). The expression of receptor and activators was variable among samples at both protein and mRNA level. Based on immunohistochemistry findings, ACE-2 was localized mainly in the most superficial epithelial cells of peripheral cornea, limbus, and conjunctiva, whereas TMPRSS2 was mostly expressed in all layers of bulbar conjunctiva. A significant increase in total and positive strands of IP4 RNA sequence (RdRp viral gene) was observed from 30 minutes to 24 hours postinfection in central cornea (1.1 × 108 [95% CI: 6.4 × 107 to 2.4 × 108] to 3.0 × 109 [1.4 × 109 to 5.3 × 109], p = 0.0039 and 2.2 × 107 [1.4 × 107 to 3.6 × 107] to 5.1 × 107 [2.9 × 107 to 7.5 × 107], p = 0.0117, respectively) and in corneoscleral rim (4.5 × 109 [2.7 × 109 to 9.6 × 109] to 3.9 × 1010 [2.6 × 1010 to 4.4 × 1010], p = 0.0039 and 3.1 × 108 [1.2 × 108 to 5.3 × 108] to 7.8 × 108 [3.9 × 108 to 9.9 × 108], p = 0.0391, respectively). Viral RNA copies in ex vivo corneas were highly variable from one donor to another. Finally, viral RNA was detected in 3 out of 28 corneas (11%) from donors diagnosed with COVID-19. All samples from the 159 nonaffected donors were negative for SARS-CoV-2 RNA. The main limitation of this study relates to the limited sample size, due to limited access to donors diagnosed with COVID-19 and concomitant decrease in the procurement corneas from nonaffected donors. CONCLUSIONS: In this study, we observed the expression of SARS-CoV-2 receptors and activators at the human ocular surface and a variable increase in viral RNA copies 24 hours after experimental infection of freshly excised human corneas. We also found viral RNA only in a very limited percentage of donors with positive nasopharyngeal PCR. The low rate of positivity in donors diagnosed with COVID-19 calls into question the utility of donor selection algorithms. TRIAL REGISTRATION: Agence de la Biomédecine, PFS-20-011 https://www.agence-biomedecine.fr/.


Subject(s)
COVID-19/complications , Cornea/virology , Corneal Diseases/virology , Eye Infections, Viral/virology , SARS-CoV-2/physiology , Adult , Aged , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cathepsins/metabolism , Chlorocebus aethiops , Cornea/metabolism , Culture Media , Female , Humans , Male , Middle Aged , Organ Culture Techniques , RNA, Viral/metabolism , Receptors, Coronavirus/metabolism , Serine Endopeptidases/metabolism , Vero Cells , Virus Replication
5.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1597826

ABSTRACT

Organoids are tiny, self-organized, three-dimensional tissue cultures that are derived from the differentiation of stem cells. The growing interest in the use of organoids arises from their ability to mimic the biology and physiology of specific tissue structures in vitro. Organoids indeed represent promising systems for the in vitro modeling of tissue morphogenesis and organogenesis, regenerative medicine and tissue engineering, drug therapy testing, toxicology screening, and disease modeling. Although 2D cell cultures have been used for more than 50 years, even for their simplicity and low-cost maintenance, recent years have witnessed a steep rise in the availability of organoid model systems. Exploiting the ability of cells to re-aggregate and reconstruct the original architecture of an organ makes it possible to overcome many limitations of 2D cell culture systems. In vitro replication of the cellular micro-environment of a specific tissue leads to reproducing the molecular, biochemical, and biomechanical mechanisms that directly influence cell behavior and fate within that specific tissue. Lineage-specific self-organizing organoids have now been generated for many organs. Currently, growing cardiac organoid (cardioids) from pluripotent stem cells and cardiac stem/progenitor cells remains an open challenge due to the complexity of the spreading, differentiation, and migration of cardiac muscle and vascular layers. Here, we summarize the evolution of biological model systems from the generation of 2D spheroids to 3D organoids by focusing on the generation of cardioids based on the currently available laboratory technologies and outline their high potential for cardiovascular research.


Subject(s)
Adult Stem Cells/cytology , Organ Culture Techniques/methods , Organoids/cytology , Cell Differentiation , Heart/physiology , Humans , Models, Biological , Pluripotent Stem Cells/cytology , Regeneration , Spheroids, Cellular/cytology
7.
Nat Commun ; 12(1): 5809, 2021 10 04.
Article in English | MEDLINE | ID: covidwho-1450282

ABSTRACT

SARS-CoV-2 has caused a global pandemic of COVID-19 since its emergence in December 2019. The infection causes a severe acute respiratory syndrome and may also spread to central nervous system leading to neurological sequelae. We have developed and characterized two new organotypic cultures from hamster brainstem and lung tissues that offer a unique opportunity to study the early steps of viral infection and screening antivirals. These models are not dedicated to investigate how the virus reaches the brain. However, they allow validating the early tropism of the virus in the lungs and demonstrating that SARS-CoV-2 could infect the brainstem and the cerebellum, mainly by targeting granular neurons. Viral infection induces specific interferon and innate immune responses with patterns specific to each organ, along with cell death by apoptosis, necroptosis, and pyroptosis. Overall, our data illustrate the potential of rapid modeling of complex tissue-level interactions during infection by a newly emerged virus.


Subject(s)
Brain Stem/virology , Lung/virology , Models, Biological , SARS-CoV-2/pathogenicity , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/virology , Animals , Antiviral Agents/pharmacology , Brain Stem/cytology , Brain Stem/immunology , Brain Stem/pathology , Cricetinae , Immunity, Innate , Inflammation , Lung/cytology , Lung/immunology , Lung/pathology , Neurons/virology , Organ Culture Techniques , Regulated Cell Death , SARS-CoV-2/drug effects , Viral Tropism
8.
Int J Mol Sci ; 22(14)2021 Jul 17.
Article in English | MEDLINE | ID: covidwho-1323268

ABSTRACT

Organoids represent one of the most important advancements in the field of stem cells during the past decade. They are three-dimensional in vitro culturing models that originate from self-organizing stem cells and can mimic the in vivo structural and functional specificities of body organs. Organoids have been established from multiple adult tissues as well as pluripotent stem cells and have recently become a powerful tool for studying development and diseases in vitro, drug screening, and host-microbe interaction. The use of stem cells-that have self-renewal capacity to proliferate and differentiate into specialized cell types-for organoids culturing represents a major advancement in biomedical research. Indeed, this new technology has a great potential to be used in a multitude of fields, including cancer research, hereditary and infectious diseases. Nevertheless, organoid culturing is still rife with many challenges, not limited to being costly and time consuming, having variable rates of efficiency in generation and maintenance, genetic stability, and clinical applications. In this review, we aim to provide a synopsis of pluripotent stem cell-derived organoids and their use for disease modeling and other clinical applications.


Subject(s)
Drug Evaluation, Preclinical/methods , Organ Culture Techniques/methods , Organoids/cytology , Pluripotent Stem Cells/cytology , Animals , Humans , Models, Biological , Organoids/drug effects , Organoids/metabolism , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/metabolism
9.
Vet Microbiol ; 252: 108933, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-966338

ABSTRACT

There is strong evidence that severe acute respiratory syndrome 2 virus (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, originated from an animal reservoir. However, the exact mechanisms of emergence, the host species involved, and the risk to domestic and agricultural animals are largely unknown. Some domestic animal species, including cats, ferrets, and minks, have been demonstrated to be susceptible to SARS-CoV-2 infection, while others, such as pigs and chickens, are not. Importantly, the susceptibility of ruminants to SARS-CoV-2 is unknown, even though they often live in close proximity to humans. We investigated the replication and tissue tropism of two different SARS-CoV-2 isolates in the respiratory tract of three farm animal species - cattle, sheep, and pigs - using respiratory ex vivo organ cultures (EVOCs). We demonstrate that the respiratory tissues of cattle and sheep, but not of pigs, sustain viral replication in vitro of both isolates and that SARS-CoV-2 is associated to ACE2-expressing cells of the respiratory tract of both ruminant species. Intriguingly, a SARS-CoV-2 isolate containing an amino acid substitution at site 614 of the spike protein (mutation D614G) replicated at higher magnitude in ex vivo tissues of both ruminant species, supporting previous results obtained using human cells. These results suggest that additional in vivo experiments involving several ruminant species are warranted to determine their potential role in the epidemiology of this virus.


Subject(s)
Organ Culture Techniques , Respiratory System/virology , Ruminants/virology , SARS-CoV-2/physiology , Viral Tropism , Virus Replication , Angiotensin-Converting Enzyme 2/genetics , Animals , Cattle/virology , Host Specificity , SARS-CoV-2/genetics , Sheep/virology , Swine/virology
10.
Emerg Microbes Infect ; 9(1): 2663-2672, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-919316

ABSTRACT

Rapid accumulation of viral proteins in host cells render viruses highly dependent on cellular chaperones including heat shock protein 90 (Hsp90). Three highly pathogenic human coronaviruses, including MERS-CoV, SARS-CoV and SARS-CoV-2, have emerged in the past 2 decades. However, there is no approved antiviral agent against these coronaviruses. We inspected the role of Hsp90 for coronavirus propagation. First, an Hsp90 inhibitor, 17-AAG, significantly suppressed MERS-CoV propagation in cell lines and physiological-relevant human intestinal organoids. Second, siRNA depletion of Hsp90ß, but not Hsp90α, significantly restricted MERS-CoV replication and abolished virus spread. Third, Hsp90ß interaction with MERS-CoV nucleoprotein (NP) was revealed in a co-immunoprecipitation assay. Hsp90ß is required to maintain NP stability. Fourth, 17-AAG substantially inhibited the propagation of SARS-CoV and SARS-CoV-2. Collectively, Hsp90 is a host dependency factor for human coronavirus MERS-CoV, SARS-CoV and SARS-COV-2. Hsp90 inhibitors can be repurposed as a potent and broad-spectrum antiviral against human coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Benzoquinones/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics , Host Microbial Interactions/drug effects , Lactams, Macrocyclic/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , A549 Cells , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Intestines/virology , Organ Culture Techniques , RNA, Small Interfering , Severe acute respiratory syndrome-related coronavirus/drug effects , SARS-CoV-2/drug effects , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
11.
Genes (Basel) ; 11(8)2020 08 10.
Article in English | MEDLINE | ID: covidwho-708422

ABSTRACT

The coronaviruses are a large family of enveloped RNA viruses that commonly cause gastrointestinal or respiratory illnesses in the infected host. Avian coronavirus infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of chickens that can affect the kidneys and reproductive systems resulting in bird mortality and decreased reproductivity. The interferon-inducible transmembrane (IFITM) proteins are activated in response to viral infections and represent a class of cellular restriction factors that restrict the replication of many viral pathogens. Here, we characterize the relative mRNA expression of the chicken IFITM genes in response to IBV infection, in vivo, ex vivo and in vitro using the pathogenic M41-CK strain, the nephropathogenic QX strain and the nonpathogenic Beaudette strain. In vivo we demonstrate a significant upregulation of chIFITM1, 2, 3 and 5 in M41-CK- and QX-infected trachea two days post-infection. In vitro infection with Beaudette, M41-CK and QX results in a significant upregulation of chIFITM1, 2 and 3 at 24 h post-infection. We confirmed a differential innate response following infection with distinct IBV strains and believe that our data provide new insights into the possible role of chIFITMs in early IBV infection.


Subject(s)
Chickens/genetics , Chickens/virology , Coronavirus Infections/veterinary , Host-Pathogen Interactions/genetics , Membrane Proteins/genetics , Animals , Coronavirus Infections/genetics , Gene Expression Regulation, Viral , Host-Pathogen Interactions/physiology , Infectious bronchitis virus/pathogenicity , Infectious bronchitis virus/physiology , Organ Culture Techniques , Poultry Diseases/etiology , Poultry Diseases/genetics , Poultry Diseases/virology , Viral Load , Viral Tropism
12.
Ophthalmologe ; 117(7): 622-625, 2020 Jul.
Article in German | MEDLINE | ID: covidwho-611906

ABSTRACT

The appearance of the novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV­2) poses challenges in ophthalmology particularly for eye banks. A valid risk assessment for the removal and processing of donor corneas is difficult due to the lack of data. The risk to infect transplant recipients with SARS-CoV­2 still appears very unlikely due to the experience with severe acute respiratory syndrome -coronavirus(­1) (SARS-CoV(­1)) and Middle East respiratory syndrome-coronavirus (MERS-CoV); however, due to the occurrence of angiotensin-converting enzyme 2 (ACE2) receptors in the cornea an infection of this tissue with SARS-CoV­2 cannot be completely excluded. Therefore, routine testing of the organ culture medium used for donor corneas for SARS-CoV­2 prior to transplantation during the coronavirus disease 2019 (COVID­19) pandemic should be considered.


Subject(s)
Betacoronavirus , Cornea , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , Humans , Organ Culture Techniques , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL